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ABSTRACT (UNCLASSIFIED)

Using optical radar (LIDAR) techniques, properties of the atmosphere can be determined by remote sensing.
Examples are, ¢.g., the horizontal visibility or the extinction coefficient, the vertical extinction or visibility
profile and the cloud base altitude. Because the time scales in the atmosphere are much shorter than the
maximum sample rate of the lidar available at the start of this project, a need existed of a system with a
repetition rate of at least 10 pulses per second. With such a svstem it is possible to measure the dynamics of
the atmosphere un a sub-second time scale and to map smoke and dust clouds. This report describes the
properties of such a system, designed and developed at the Physics and Electronics Laboratory TNO. Some
typical examples of results obtained with this system are presented. This is the final report of the work
performed under assignment A84KL122.
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SAMENVATTING (ONGERUBRICEERD)

; Met behulp van optische radar (LIDAR) techniecken kunnen eigenschappen van de atmosfeer op afstand

bepaald worden. In horizontale zin is dat bijvoorbeeld het zicht of de extinctie coefficient en in vertikale zin

: het extinctie- of het zicht-profiel en de wolkenbasishoogte. Daar de tijdschalen in ue atmosfeer veel korter
zijn dan gemeten kon worden met de lidar-apparatuur die ons bij het begin van dit project ter bsschikking
stond, was er behoefte aan een lidarsysteem met een herhalingsfrequentie van tenminste 10 Hz. Hiermede is
het dan mogelijk dynamische verschijnselen van de atmosfeer op een tijdschaal van onderdelen van een
seconde vast te leggen. Voorbeelden zijn het dynamisch gedrag van de atmosfeer en de omvang en
ontwikkeling van rook- en stofwolken. Dit rapport beschrijft de eigenschappen van een dergelijk, op het
Fysisch en Elektronisch Laboratorium TNO gerealiseerd, lidar-systeem. Enige typische voorbeelden van
verkregen meetresultaten worden gepresentserd. Dit is het eind-rapport van de werkzaamheden die zijn
uvitgevoerd in het kader van opdracht A84KL122.
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1 INTRODUCTION

Lidar (LIght Detection And Ranging) is the optical equivalent of radar, working in the spectral
range from about 200 nm to about 10 pm. In general lidars are applied for the remote sensing of
some inherent atmospheric properties or for the detection of aerosol or gaseous species.
Furthermore atmospheric dynamics can be studied if the repetition rate is high enough. Examples
of lidar-measured quantities are:

- extinction and backscatter coefficient

- visibility

- cloud base altitude

- vertical extinction or backscatter profile

- concentration of gaseous species (ozone, water vapour, methane, etc)
- wind speed and wind direction

- temperature

- water depth

In general the rauge of a lidar system is of the order of some kilometers, The most powerful
system known is Japane se, (Sasano, 1982) with a maximum range of about 30 km, When used as
a range finder for sokid targets, the \naximum range is much larger. Rangefinders are limited Ly
the transmission of the atmosphere, the target reflection and the sensitivity of the system.

Lidar systems developed and employed at the TNO Physics and Electronics Laboratory thus far
(7 in total) had a relatively low repetition rate (less than one Hertz, ¢.g,, Lamberts, 1974 and
Kunz, 1978) and were well suited for their tasks, They were used in both national and
international experiinents over land (Kunz, 1982; 1984). Furthermore they were used over the
North Atlantic aboard a ship (De Leeuw, 1984 .. 1989). For a number of purposes, it is desirable,
or even required, to use a lidar system with a repetition rate of 10 or 20 Hz. With a hizh repetition
rate lidar the atmosphere can more or less be frozen by a fast scan in one or more planes (Range
to Height Indicator or RHI and/or Plane Position Indicator or PPI). This provides the possibility to
map plumes and clouds over large areas. Furthermore the mobility and size of spatial
inhomogeneities can be monitored by repetitive measurements along a plane or a volume. This
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means that also the wind speed can indirectly be measured by following eddies trough the aerosol
variations. Finally the performance of alternative lidar inversion techniques for measuring the
vertical structure can be tested without the need of additional information (Kunz, 1988).

In this report we describe the realisation of a lidar system with a maximum repetition rate of about
13 Hz. It is refered to as 'SMAL/, an acronym for Scanning Miniature Automatic Lidar, Some
typical results as well as some features of the system will be presented in this report.
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2 DESCRIPTION OF THE SYSTEM

Roughly, a lidar system can be subdivided into the transmitter, the receiver, the registration
system and the control unit. In addition, SMAL has been mounted on a platform that is adjustable
in both elevation and azimuth, to allow for measurements in any desired direction, The realisation
and the properties of these parts in SMAL are discussed below in separate sections. The complete
lidar system is shown in Figure 2.1. The main unit is the large box with the logo 'LIDAR', An
auxiliary lidar, which can be pointed in a different direction, has been mounted on top. The large
(black) apertures are the optical receiver channels and the small holes in between those two are
the output apertures for the laser beam. A television camera for surveillance purposes has been
mounted behind the third optical channel in the main unit.
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Fig. 2.1: The 'SMAL' dual mode lidar system. The system is mounted on a platform that is
adjustable in azimuth and elevation.

The transmitter is a flash tube pumped Nd:YAG laser. The laser was developed in-house for easy
fitting in the lidar and for easy service. The laser rod and the flash tube are mounted in a common
housing which is flushed with distilled water (and a few percent ethanol) to drain the superfluous
heat via a closed water circuit. Arovnd the laser rod and the lamp a gold plated brass reflector has
been constructed to improve the pump efficiency of the laser. The electrical connections of the
flashtube are left outside the housing to keep them dry. A free optical path for the laser beam is
obtained by additional holes in the housing which are sealed with O-rings around the laser rod.
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¥ Finally a spark plug has been mounted in the solid housing (in fact a high voltage feed-through

! with a tungsten wire which touches only the lamp) for the ignition of the simmer mode.

The resonator of the laser has a length of 40 cm. The back mirror has a reflectivity of 99,9 %; the
' front mirror has a reflectivity of 50 %. Both mitrors are coated for 1064 nm. An aluminum profile
: gives the resonator sufficient mechanical rigidity against bending, A zerodur rod, embedded in
araldite, has been mounted in the center of the aluminum profile for stabilisation of the resonator
length against temperature variations. The output obtained in this way is of the order of 100 mJ, in
the normal laser mode. For lidar work hownver, the laser must be operated in the single pulse

mode, This was achieved with a passive Q-switch of a thin nickel complex layer of
bis(4-dimethylaminodithiobenzil) nickel (BDN) from Eastman Kodak, dissolved in
dichloromethane. This way of Q-switching is both simple and reliable compared with rotating
prisms or Pockels cells that are commonly used. The location of the cuvette with the bleachable
\ dye in the resonator appeared not critical; for mechanical reasons it was decided to place it close
to the front mirror. The available output of the laser in the Q-switched mode decreased however
to about 20 mJ, independent of the concentration BDN or the pump energy. A maximum
repetition rate of 13 Hz was obtained, limited in this set-up by the power supply. The properties of !
the laser transmitter are summarized in Table 2.1. s

Table 2.1:  Properties of the laser transmitter for the lidar.

Laser material Nd&:YAG; 0.9 %; Union Carbide
Laser wavelength 1064 nm

Rod dimensions I= %) mm; d= 5 mm

Flashtube EG&G, FXQ274-2
Q-switching dye Kodak 14015 (BDN)

Solvent dichloromethane

Dye thickness 1 mm

Energy per pulse 20mJ

Pulse width 20ns

Divergence 2.2 mrad

Pump capacitor 60 uF

Series inductance 20 uH; toroid

Repetition rate 15 Hz max,

Cooling system NESLAB CFT-25

Coolant 10 % ethanol in distilled water
Flow about 2 liters per minute ;
Deionisor Permutit CD-250

Power consumption 1 kW overall.
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The electric circuit, consisting of a capacitor of 60 {F and an inductance of the order of 20 mH,
can be charged with a voltage between 600 and 1000 V. The inductance was realized as a toroid
because other constructions induced very large currents in the housing as well as in the cables,
due to the very strong external magnetic field. It can be shown, from the optical output and the
electrical input, that the overall efficiency is of the order of 0.3 %. The laser unit is shown in

Figure 2.2,

BN .
. . -

Overview of the complete laser unit, Water connections and electrical power suppl
are at the front left end of the box. The other electrical connections, at the back en
of the bov, are plugs fitting into connections in the lidar. Laser head, toroid, cuvette

and mizrors are visible.

Receivers for the lidar consist of a collimating telescope and an avalanche photodetector in the
focal plane, to convert the optical radiation into an electrical signal. Because the system was
designed with two simultancous measuring channels, two receivers were installed. The main
receiver has a diameter of 8 inch and the auxiliary channel has a diameter of 5 inch. The reverse
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voltage for the detectors are temperature controlled to keep the gain at a fixed value. Optical
interference filters and diaphragms are placed in the optical path to reduce the background-
induced noise and the field of view. Amplifiers for the lidar are constructed such that the
(daylight) background induced noise can be made visible. Other properties of the receiver are
summarized in Table 2.2.

Table 2.2:  Specifications of the optical receivers.
Main telescope Celestron 2000
Effective area 2.19 E-8 km?
Auxiliary telescope Celestron 750
Effective area 9.35 E-9 km?
Filter 3 cavities; T=67 %
Detector RCA C30916E
Sensitivity 12A/W
Amplifier 120xV/W
Rise time 25ns
Dark noise 1.5mv
Max. output signal 6 Vinto 50 Q

Both the amplification factor and the electrical bandwidth of the receivers can be remotely set. In
this way very strong signals, e.g., from hard targets, can be attenuated. Weak signals originating
from extended targets and at large distances can be processed with a reduced bandwidth to
suppress the noise.

The large dynamic range of lidar signals, within # ivaction of a second, make their registration
extra difficult, One of the solutions for this probletn is to apply a logarithmic amplifier. These
units generally have a logarithmic transfer for large signals and a constant transfer for small
signals. In this way the dynamic range of the lidar signals caa be electrically diminished before
digitizing the stronger part of the signal while the weaker part is unaffected. A report on this
subject has recently been published (Kunz, 1990).

Mechanical set up, The lidar is mounted on a platform which can be scanned in both azimuth and
elevation angle. The platform in turn is mounted on a tripod which is adjustable in height. In this
way the system can measure over 356 degrees in azimutha! direction and from -15 degrees to +95
degrees in vertical direction. Feedback of both the position and the speed provides a direction
accuracy of less than 1 mrad in azimuth and less than 0.5 mrad in elevation. The minimum and
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marimum speed in both directions is respectively 0.4 and 72 degrees per second. The platform
electronics can be controlled by computer via the IEEE 488 bus. The settings can be stored in the
memory of the platform and, once programmed, it can perform the selected motion without
further computer or manual assistance. The position can be read by position sensors. This
information is necessary for processing of the signals,

Apart from the electronics for controlling the laser and the detectors, a transient zecorder and a
computer with a sufficient large storage capacity are required, For example, when the system is
running at 8 Hz, 1 MByte of data or more is generated each minute depending on the record
length. Furthermore a tclevision monitor, a printer and a simple A/D converter are part of the
hardware. .\ specification of the additional equipment is summarized in Table 2.3, With the
available equipment it is possible to record waveforms of 1024 samples with a repetition rate of
about 16 Hz.

Table 2.3:  Other equipment necessary to run the lidar

Transient Recorder Tektronix 7612D
Monitor Tektronix 604
Pre-Processing 1. Analog Modules LA-90-P
2, Optec OS-LA-5-20

Computer HP Vectra; 80286
Display Barco CD 233
Graphics adapter Tecmar Graphics Master
1EEE 488 interface Tecmar PC Master
AD/DA converter Tecmar Labtender
Video camera Sony CH 1400 CE
Video recorder Sony SC-FIE
Colour printer HP Paintjet

Software

Much effort and man power has been spent on software development for controlling the SMAL
system, collecting the data, processing, analysis and measuring. This is a continuing effort which
will not be further discussed.
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3 SOME TYPICAL EXAMPLES |

In this chapter some typical results obtained with the SMAL lidar will be shown. The data

JURERP TSRS

presented here were recorded with a repetition rate between 3 and 10 Hz and analogue pre-
processed with a logarithmic amplifier. The pre-processed data were range compensated to
corract for the geometric attenuation, Finaliy the results were converted to a false colour or gray
scale representation in which the backscatter value is colour-coded and time and range are plotted
along the axes. In this way an overview of the whole data record can be provided. At this moment
16 different colours or gray values are available for presentation on the computer screen. The
sequence of colours has been chosen such that they correspond with the optical spectrum. In most
figures the colour scale is visible in the right. Because the number of colours is limited, only part
of the information can be presented in one figure. Either the fine structure is visible in a small
interval of the signal amplitude (smaller and larger data values not visualized) or the whole signal
amplitude interval is visible with the fine structure not resolved (fine structure data falls within
one colour). The choice for a representation depends on the purpose of the plot and is made ad
hoc by the operator. In the next few pages some results are presented,

Different measurement methods are distinguished:

1. measurements in a fixed direction

a.  horizontally
b. under a positive elevation angle
¢.  vertically

2. vertical scans or RHI (rauge to height indicator)

3. horizontal scans or PPI (plane position indicator)

Furthermore combinations of these patterns are possible. For each category at least one example
will be presented. With the SMAL syster.1 conical scans are also possible.
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1. Measurements in a irection

Figure 3.1 shows an example of scattering from smoke patches in a time versus range plot when
the system was pointed (almost) horizontally in a fixed direction over a smoke source. The wind
was towards the lidar. The patches of smoke drifting in the direction of the lidar are visible. The
sample frequency was 3 Hz and the range to the smoke source was 270 m. The figure shows a

sequence of 500 measureinents.

An other example of a horizontal measurement is shown in Figure 3.2. Here the lidar operated in
a clear atmosphere parallel with the wind and at a small elevation angle. The repetition rate was
10 Hz and the maximum range was 1.5 km. The structure of aerosol cells or eddies, observed with
the lidar, are not visible by eye. It is clear that the eddies now move away from the lidar, This
figure is a typical example where only the small modulation of the lidar signal has been
visualized.

Other figures with asrosol eddies driven by the wind are presented in Chapter 4.
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The next three examples show the results of measurements in the vertical direction. Figure 3.3
shows an cxample of a rather turbulent mixed layer and a more quiet atmosphere at higher
altitudes. The maximum altitude recorded was 3 km and the recording time was 1 minute.

Figure 3.4 shows a quiet well-mixed layer with a depth of about 500 m. Above the mixed layer
the atmosphere is less turbid and horizontally stratified. Because the visibility was very good in
this situation, the signal to noise ratio is low.

The last example in this series is shown in Figure 3.5. It shows the sharp edge of a cloud layer at
about 2 km altitude and at lower altitudes a stable mixed layer with some structure in the lower

level,
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2. e ments in a verti an,

Figre 3.6. shows a vertical cross section of the atmosphetic backscatter measured within a period
of 15 seconds recorded over a range of 3 km. The cloud layer is clearly visible and also some
sca:tering from above the cloud is observed. Furthermore the cloud eddies are visualized. This
ty~e of measurement can be used for locating smoke plumes and measuring their cross section.

Time series of such figures might give an insight in the dynamic behavior of the atmosphere. Two
diffe.ent examples are presented in the next two figures. Figure 3.7 has been recorded with a
rather low angular resolution but the stratification of the etmosphere as well as the large dynamics
in the scattering are well visible. Most remarkable is the detection of a second and a third cloud
layer at larger altitudes (not visible by the human eye due to the strong radiation of the lowest
layer).

Two sequentially recorded vertical cross sections of  clear atmosphere are prasented in Figure
3.8. Here a large eddy is visible in the mixed-layer as weil as a clear, horizontally stratified, layer
at larger altitudes. The white stripes in the figure are caused by double pulses from the laser and
are not atmospl.eric returns.

The last example of a vertical atmospheric cross section is shown in Figure 3.9. Although the
number of samples is rather limited, some interesting features are visible. First a cloud layer is
visible at about 1000 m altitude. At about 45 degrees from the horizon, part of this layer was not
detected due to screening by a cloud patch at about 400 m. No signal at all is detected above the
clouds (the structure above the cloud is only noise). Furthermore a local maximum in backscatter
is visible below the higher cloud layer and finally the convolved top of the mixed layer can be
distinguished. This last phenomenon has earlier been reported by Sasano, 1982 and has also be
seen by radar, see ¢.g., Konrad, 1970 and Battan, 1973.
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3. urements in a horizontal pl

{ Operating the lidar horizontally or at a small elevation angle with the plaiform rotating around the
vertical axis, a horizontal or near horizontal cross section of the atmosphere is obtained. This
method is useful for mapping plumes, turbulence structure etc. or for surveillance purposes. A
typical example of a time series of horizontal cross sections of the atmosphere is presented in
Figure 3.10. Here the size of a plume has been mapped at four different elevations and over an
area of 240x143 m2. The source of the plume is in middle of the left horizontal axis of each plot.
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4 WIND MEASUREMENTS

4.1 Introduction

It has been shown in the previous chapter that aerosol eddies can be detected with a single
channel laser radar (see, e.g., Figure 3.1). If it is assumed that these eddies have the same speed
and direction as the wind, they can serve as a tracer for wind measurements. This idea is not new.
Derr (1970) proposed a method to measure the wind vector with a lidar by measuring the transient
time of aerosol eddies over a given path. Eloranta (1975) published results of wind speed
measurements based on the principle of following the aerosol eddies with a Mie lidar over ranges
to a maximum of 7 km. These measurements were further extended to three-point measurement
by Stroga, 1980, Other articles on this principle were published by, e.g., Kunkel, 1980, Clemesha,
1981, Hooper, 1986 and Kolev, 1988. Wind measurements based on the analysis of lidar-
measured PPI figures over a large area were published by, e.g. Sasano, 1982 and Ferdinandov,
1984.

- . . - . 2t
42 Radial wind deicciion

By pointing the lidar parallel with the wiid vector, as shown in Figure 4.1, the aerosol eddies
moving towards or away from the lidar can be detected by a series of measurements in a fixed
direction. An example of this kind of measurement is shown in Figure 4.2. The cross section of
the cells as well as their speed can be determined from the figure. If the lidar is pointed
perpendicular to the wind vector the aerosol eddies are illuminated normal to their direction of
movement. The pattern shown in Figure 4.3 cannot unambiguously be related to wind speed
because the sizes and the slopes of the individual eddied are unknown. Furthermore vertical
airflow may influence the observed transient times of the eddies. (Figure 4.3 shows the results of
such a measurement which was done some minutes before recording the previous figure.)
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Fig. 4.1: Schematic representation of the lidar direction for radial wind speed measurements.
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' The figures show eddies of about 100 m and less. The best performance of wind speed
measurements with this method is obtained when the lidar is pointed in a horizontal direction

because measuring vertically provides only information on the presence of the aerosol cells and
their heights. (Wind direction can than only be inverted if the cell dimensions are known a priori).
Furthermore it is necessary that the variations in aerosol concentrations between the eddies can be
detected with the lidar, Practice shows that this is not always the case.

With a dual beam system the measurements can be performed under two different, but small,
elevation angles. This principle is shown in Figure 4.4,

Fig.4.4: Pri.nciPle of wind s detection with two beams, Correlation of signals at the same
height can provide the wind speed.

By correlating signals from the same height, the time shift in combination with the geometry of
the lidar provides a way to invert the wind speed (Hooper, 1986). The wind direction can be
determined by performing a set of these measurements in different horizontal directions.
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4.3 Cross wind detection

The wind speed perpendicular to the lidar axis can be determined with a dual beam system, shown
in Figure 4.5, A two dimensional correlation is required to invert the wind speed from the two sets
of lidar data.

Fig. 4.5: Principle of a cross wind measurement with a dual lidar system. The windvector can
be inverted by correlating the signals from the two lidars.

44 Wind measurements with a scanning lidar

With a scanning lidar there are more possibilities to measure the wind vector. For instance, the
data obtained from a number of PPI measurements can be correlated. (However, a system with
sufficient repetition rate is required.) The principle is the same as applied for cloud speed
determination from satellite pictures, ¢.g., Leese, 1971,

The wind speed as a function of aititude can be determined by scanning the lidar in a vertical
plane parallel to the mean wind speed. Here also the whole RHI figures must be correlated. If the
wind direction is not known, measurements in different azimuth directions can provide this
information. It should be noted, however, that the amount of data and the number of calculations
will increase explosively. Furthermore the shape of the aerosol cells will change as they propagate
with the wind, which reduces the accuracy of the result. An example of four consecutive vertical
cross sections is presented in Figure 4.6 where some of the distinguished aerosol eddies, which
drift with the wind, are indicated.
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Finally, a scanning lidar can also be used for application of the well known three point method for
wind measurements. This principle is based on measuring the variation of atmospheric
backscatter in three different directions around a given axis. By correlating the signals, the
inversion of the wind vector should be possible. This has been published earlier by Clemesha,
1981. See also section 4.1.

4.5 Conclusion

Measurements of the wind vector are based on detection of aerosol concentration differences
which are advected by the wind with the same speed. Measurements on a routine base have
shown however, that these differences are not always present. It should also be kept in mind that
the acrosol eddies change both in time and space which necessitates that the measurements are
performed within a limited time.
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5 CONCLUSION

Measurements by the Physics and Electronics Laboratory TNO with lidar systems thus far,
provided information on the atmosphere with a time separation of 10 seconds to 6 minutes. These
systems are well suited to investigate variations on a time scale of minutes to hours. The
maximum range of these systems varied between 1 and 10 km. For studies on shorter time scales,
lidar systems with a higher repetition rate are required. Such systems are already in use by other
investigators (Eloranta, Sasano, Werner, Flament). With these high repetition rate systems the
dimension time becomes better accessible to the user. Stack plumes can be measured in a shorter
time interval, the dynamics of plumes, clouds and the clear atmosphere can be better visualized.

A lidar with a relatively high repetition rate (13 Hz) has been developed and constructed at the
Physics and Electronics Laboratory TNO, which can measure in the clear atmosphere at ranges up
to about 3 km. (Hard targets and clouds can be detected at much larger ranges). The system has
been calibrated to perform quantitative measurements of the atmospheric backscatter. A rotating
platform offers the possibility to point the system in every desired direction. The system is
computer controlled. A second lidar has been mounted on top of the main lidar (unique design)
for simultaneous measurements in different directions to investigate the feasibility of wind
measurements.

To present the large amount of data (about 1 Mbyte/min) with this lidar, the method of false
colour or a gray scale coding has Leen chosen for quick look and for presentation purposes, For

quantitative results the data is stored.

The system is also suitable for testing alternative inversion methods for the vertical extinction
profile as shown by Kunz, 1988,

The research efforts will be continued to measure the cross wind with the SMAL system.
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